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Abstract. Substantial biases exist in the Satellite Precipitation Estimates (SPE) over complex terrain regions and it has always 15 

been a challenge to quantify and correct such biases. The combination of multiple SPE and ground observations would be 

beneficial to improve the precipitation estimates. In this study, a flexible two-step approach is proposed by firstly reducing the 

systematic errors of each SPE using rain gauge observations as references, and then merging the improved multi-SPE with a 

Bayesian weighting model. In the 1st stage, gauge references are assumed as a generalized regression function of SPE and 

terrain feature. In the 2nd stage, the weights assigned to the involved SPE are calculated according to the associated 20 

performance relative to gauge references. This blending method has the ability to exert benefits from multi-SPE in terms of 

higher performance and mitigate negative impacts from the ones with lower quality. In addition, Bayesian analysis is applied 

in the two phases by specifying prior distributions on the model parameters, which enables to produce posterior ensembles 

associated with their predictive uncertainties. The performance of the two-step blending approach is assessed using 

independent rain gauge observations during the warm season of 2014 in the northeastern Tibetan Plateau. Results show that 25 

the blended multi-SPE are significantly improved compared to the original individuals, especially during heavy rainfall events. 

This study can also be expanded as a data fusion framework in the development of high-quality precipitation products in high-

cold regions characterized by complex terrain. 

1 Introduction 

High-quality precipitation data is fundamental to understand the regional and global hydrological processes. However, it is 30 

still difficult to acquire accurate precipitation information in the mountainous regions, e.g., Tibetan Plateau (TP), due to limited 
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ground sensors (Ma et al., 2015). The satellite sensors are capable of providing precipitation estimates at a large scale (Hou et 

al., 2014), but performances of available satellite products vary among different retrieval methods and climatic areas (Yong et 

al., 2015; Prat and Nelson, 2015; Ma et al., 2016). Thus, it is suggested to incorporate precipitation estimates from multiple 

sources into a fusion procedure with fully consideration of the strength of individual members and associated uncertainty. 35 

 

Precipitation data fusion was initially reported by merging radar-gauge rainfall in the mid-1980s (Krajewski, 1987). The Global 

Precipitation Climatology Project (GPCP) was an earlier attempt for satellite-gauge data fusion, which adopted a mean bias-

corrected method and an inverse-error-variance weighting approach to develop a monthly, 0.25  global precipitation data 

(Huffman et al., 1997). Another popular dataset, Climate Prediction Center Merged Analysis of Precipitation (CMAP), 40 

included global monthly precipitation with a 2.5° x 2.5° resolution for a 17-year period by merging gauges, satellites and 

reanalysis data using the maximum likelihood estimation method (Xie and Arkin, 1997). Since then, several blending 

approaches have been developed to generate rainfall products with higher quality by merging gauge, radar and satellite 

observations (e.g., Li et al., 2015; Beck et al., 2017; Xie and Xiong, 2011; Yang et al., 2017; Baez-Villanueva et al., 2020). 

Overall, those fusion methods follow a general concept by eliminating biases in satellite/radar-based data and then merging 45 

the bias-adjusted satellite/radar estimates with point-wise gauge observations. However, these efforts might be insufficient for 

quantifying the predicted data uncertainty. Some blended estimates are also partially polluted by the poorly performed 

individuals (Tang et al., 2018). Therefore, this paper develops a new blending algorithm that enhances the quantitative 

modeling of individual error structures, prevents potential negative impacts from lower-quality members, and enables an 

explicit description of the model’s predictive uncertainty. In addition, a Bayesian concept for accurate rainfall estimates is 50 

proposed based on these conditions. The Bayesian analysis has the advantage of a statistically post-processing idea that could 

yield a predictive distribution with quantitative uncertainty (Renard, 2011). For instance, a Bayesian kriging approach, which 

assumes a Gaussian process for precipitation at any location and considers the elevation as a covariate, is developed for 

merging monthly satellite and gauge precipitation data (Verdin et al., 2015). A dynamic Bayesian model averaging method is 

applied for satellite precipitation data merging across the TP (Ma et al., 2018). Given the flexible distribution of multiple 55 

sources of precipitation biases in regions with complex terrain, continuous efforts should be taken to exert the potential merit 

of Bayesian approach on this critical issue. 

 

In this paper, a two-step approach is described for blending multiple Satellite Precipitation Estimates (multi-SPE) and point-

based rain gauge observations. The initial experiment is performed during the warm season of 2014 in the northeastern TP 60 

(NETP), where a denser network of rain gauges is available compared to other regions of TP. The proposed two-stage blending 

approach is also expected to help with the exploration of multi-source/scale precipitation data merging in other regions with 

complex terrain.  
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The paper is organized as follows: Section 2 gives a brief introduction of the study area and precipitation data sources. Section 65 

3 details the proposed two-stage blending approach. Results and discussions are presented in Sections 4 and 5, respectively. 

The primary summary and future work are provided in Section 6. 

2 Study area and dataset 

The selected study domain is located in the upper Yellow River basin of northeastern TP (Fig. 1). As shown in the 90-m digital 

elevation data, the elevation ranges from 785 m in the northeast to 6252 m in the southeast. The total annual precipitation is 70 

around 500 mm and the mean annual air temperature is 0.7°C (Cuo et al., 2013). To avoid snowfall contamination in the cold 

season, the warm period from May 1st, to September 30th in 2014 is selected in this demonstration study.  

 

Four popular SPE are used, including Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) - Climate Data Records (PERCDR) (Ashouri et al., 2015), Tropical Rainfall Measuring Mission 75 

(TRMM) Multi-satellite Precipitation Analysis 3B42 Version 7 (3B42V7) (Huffman et al., 2007) , Climate Prediction Center 

(CPC) Morphing technique for the bias-corrected product (CMORPH) (Joyce et al., 2004), and the Integrated Multi-satellitE 

Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) (Huffman et al., 2018) (Table 1). Since IMERG 

data has a spatial resolution of 0.10° x 0.10°, and other SPE (i.e., PERCDR, 3B42V7 and CMORPH) have a spatial resolution 

of 0.25° x 0.25°. The IMERG data are resampled from 0.10° to 0.25° so as to match the other individuals before performing 80 

the two-stage blending.  

 

A ground rain gauge network including 34 stations are used in this study (Fig. 1). The gauge data are carefully checked to 

ensure its creditability (Shen and Xiong, 2016). All of them are independent from the Global Precipitation Climatology Center 

(GPCC) stations, which are used for bias adjustment of the TRMM/GPM-era data, such as 3B42V7 and IMERG (Huffman et 85 

al., 2007; Hou et al., 2014). In addition, the gauge network is randomly classified into two parts: the black dots are used for 

training the model, and the remaining ones are for model verification. In order to demonstrate the reliability of the proposed 

two-stage blending approach, the selection of training sites is randomly repeated for 10 times to further examine the blending 

performance. In addition, the proposed blending algorithm is applied on a heavy rainfall case of Sep 22, 2014 in the NETP, to 

quantify the performance during heavy rainfall scenario. Local recycling performs as a premier role for the moisture sources 90 

of rainfall extremes in the NETP (Ma et al., 2020). This case is a typical storm that could stand for the local heavy rainfall 

patterns to a large extent during the warm season. 
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3 A two-stage blending algorithm 

3.1 Overview 

This algorithm aims at developing a multi-source data merging framework so as to provide the best-available precipitation 95 

product in any region of interest. Let 𝑅(𝑠, 𝑡) denote near-surface precipitation at gauge site s and the tth day in a year. The 

original and bias-adjusted multi-SPE at the same location and time are defined as (𝑌1(𝑠, 𝑡), 𝑌2(𝑠, 𝑡), … , 𝑌𝑝(𝑠, 𝑡)  and 

(𝑌1
′(𝑠, 𝑡), 𝑌2

′(𝑠, 𝑡), … , 𝑌𝑝
′(𝑠, 𝑡) ), respectively. For simplicity, they are accordingly replaced by 𝑅 , (𝑌1 ,  𝑌2 ,…,  𝑌𝑝 ), and 

(𝑌1
′, 𝑌2

′,…,𝑌𝑝
′). Noted that the value of p equals to 4 in this study, where PERCDR, 3B42V7, CMORPH and IMERG refers to 

𝑌1, 𝑌2, 𝑌3, 𝑌4, respectively. 100 

 

The diagram of the proposed two-stage blending approach is shown in Figure 2. Stage 1 is designed to correct the systematic 

errors of individual SPE using point-based rain gauge observations (training sites) as ground references, where the assumptions 

of various probabilistic distribution for gauge references conditional on each SPE are not limited to Gaussian prototype. The 

impact of topography is also considered. In the 2nd step, a Bayesian weight model is applied to blend the improved multi-SPE. 105 

It has the ability to exert benefits from multi-SPE of higher performance and mitigate negative impacts from the ones with 

lower quality. It is expected to produce posterior blended results associated with their predictive uncertainties in the survey 

region.  

 

The details of the two-stage blending algorithm are described in Sections 3.2 and 3.3, respectively. 110 

3.2 Stage 1: Bias adjustment 

A generalized regression function between gauge references, individual SPE, and terrain features is proposed in the 1st stage. 

Because the bias of SPE generally follows a skew Normal distribution, it is important to fit an appropriate function. In this 

paper, a Student’s t distribution is assumed for modelling of gauge observations conditional on the individual SPE. It is written 

as: 115 

𝑅|𝑌𝑖  ~𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝜈𝑖 , α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍, σ𝑖), α𝑖, β𝑖 , γ𝑖 ∈ 𝑅, 𝜈𝑖 , σ𝑖 ∈ 𝑅+                                (1) 

where 𝛉 = {𝜈𝑖 , α𝑖, β𝑖 , γ𝑖 , σ𝑖}  are model parameter sets in order to adjust the ith SPE. (α𝑖 + β𝑖 ∗ 𝑌𝑖 + γ𝑖 ∗ 𝑍) represents the 

sample mean and Z is the associated collection of covariates (e.g., topography). More specifically, the normalized elevation is 

used as a covariate in this experiment. These parameters are real numbers and 𝜈𝑖 , σ𝑖  are positive. It should be noted that some 

other distributions (e.g., Lognormal, Normal) are also examined but there are no obvious improvements in terms of the bias-120 

adjusted result compared to Student’s t distribution for this test. 

 

Based on the gauge observations and multi-SPE at the training sites, model parameters for each SPE could be estimated within 

a Bayesian analysis using the Markov Chain Monte Carlo (MCMC) technique (Gelman et al., 2013). Next, it is to calculate 
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each of the bias-adjusted SPE at any new site (𝑠′) of the domain at the same period. The conditional distribution of bias-125 

adjusted SPE at any new site is mathematically defined as: 

𝑓(𝑅𝑠′|𝑌𝑖) = ∫ 𝑓(𝑅𝑠′ , 𝛉|𝑌𝑖) 𝑑𝛉                                                                            (2a)  

= ∫ 𝑓(𝑅𝑠′|𝛉)𝑓(𝛉|𝑌𝑖) 𝑑𝛉                                                                    (2b) 

where the posterior distribution of 𝑅𝑠′|𝑌𝑖 from Eq. 2 can be simulated numerically based on the calculated parameter samples 

𝛉 at the training sites using the MCMC samplings. We further assume N as the size of post-convergence MCMC samples. The 130 

above process is repeated N times and produces a predictive posterior distribution at any new site 𝑠′ and time t. 

3.3 Stage 2: Data merging 

On the basis of Stage 1, this part is designed to blend the updated multi-SPE at each grid cell of the domain. With regard to 

the individual SPE, the median value of the posterior samples from Stage 1 is assumed as the new SPE. Here, we redefine the 

bias-adjusted multi-SPE as 𝑌𝑖
′(𝑖 = 1,2, … , 𝑝), respectively.  135 

 

The formulas of blending the bias-adjusted multi-SPE are shown below: 

𝐵 = ∑ 𝑌𝑖
′𝑝

𝑖=1 ∗ 𝑤𝑖 +  𝜀, 𝑤𝑖 ∈ 𝑅(0,1), 𝜀 ∈ 𝑅+                                                                 (3) 

∑ 𝑤𝑖
𝑝
𝑖=1 = 1                                                                                             (4) 

where B means the blended result; 𝑤𝑖  (i=1,2,…,p) stands for the relative weight of the ith SPE, respectively, and their values 140 

range from 0 to 1; 𝜀 is the residual error,  whose value is positive real number. Ideally, the blended multi-SPE, i.e., B, at the 

training site s and time t should be close to gauge references R(s, t). Thereby, the weight parameters, including 𝑤𝑖(𝑖 = 1,2, . . 𝑝) 

and 𝜀 are able to be estimated at the training sites based on gauge observations and new multi-SPE within a Bayesian analysis 

using the MCMC technique. 

 145 

As the weight parameters are successfully derived above, similar to Eq. 4, the blended result at any new sites at time t are 

calculated based on the retrieved new multi-SPE and corresponding optimal weights. Finally, we can obtain spatial patterns of 

blended multi-SPE and point-based rain gauge observations in terms of the median, standard deviation (SD) and associated 

confidence intervals (e.g., 5% and 95% quantiles) in regions of interest. 

4 Results 150 

To assess the performance of the proposed two-stage blending method, several statistical error indices including Root Mean 

Square Errors (RMSE), Normalized Mean Absolute Errors (NMAE), and the Pearson’s Correlation Coefficients (CC) are used 

in this study. The specific formulas of these metrics can be found in Chen et al. (2019). 
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4.1 Bias adjustment of multi-SPE 

Compared to the gauge references, the original multi-SPE including PERCDR, 3B42V7, CMORPH and IMERG show 155 

significant biases at the independent validation sites over the NETP during the warm season of 2014 (Table 2). Their statistical 

error metrics range from 6.59-8.07 mm/d, 63.2-83.5%, and 0.40-0.57, in terms of RMSE, NMAE, and CC, respectively. 

3B42V7 performs the worst with the highest RMSE and NMAE at 8.07 mm/d and 83.5%, and the lowest CC of 0.40. IMERG 

shows the best performance in terms of the lowest NMAE at 63.2% and highest CC at 0.57 among the four SPE. It seems that 

the satellite retrievals need to be further clarified with regard to the mainstream SPE in the NETP.  160 

 

After the bias adjustment of each SPE, the updated multi-SPE show great improvement in data quality during this experiment 

(Fig. 3). These changes result in better agreement of SPE with rain gauge measurements at the validated sites in the NETP. 

Both RMSE and NMAE of the corrected multi-SPE are correspondingly decreasing in terms of 4.56~5.06 mm/d and 

50.9~58.7%, respectively. As compared with the original multi-SPE, the updated ones decrease by 27~37.3% and 19.1~31.1% 165 

with respect to RMSE and NMAE, respectively. Moreover, the CC index of four SPE vary from 0.42 to 0.57 after bias 

adjustment, which slightly increases as compared to the original SPE. It is also found that 3B42V7 improves the most in terms 

of its RMSE decreasing from 8.07 mm to 5.06 mm using the step 1’s method. Basically, it implies that the proposed bias-

adjusted algorithm occurred in phase 1 is very effective for reducing systematic errors of four involved SPE in the warm season 

of 2014 in the NETP. 170 

4.2 Blending multi-SPE and independent validation 

To test the performance of the proposed two-step blending approach, the blended multi-SPE at the validation sites are further 

examined. As shown in Figure 3, the fusion result is closer to the ground reference in terms of RMSE, NMAE and CC, 

compared to the individual SPE. The RMSE and NMAE indices of the merging data decrease by 34.1~65.4% and 27.1~41.1%, 

respectively, compared to the individual SPE, while the CC index increases by 6.7~50.4%, accordingly (Table 2). Compared 175 

to the bias-corrected multi-SPE, the performance of the blended data increases by 5.1~14.2%, 3.3~16.2%, and 5.9~47.8% in 

terms of RMSE, NMAE and CC, respectively. That is to say, the merged precipitation in the warm season of 2014 at the 

validated sites of NETP exhibit higher quality after merging the bias-corrected multi-SPE using the optimal relative weights 

shown in Figure 4a. The blended data have been effectively dropped towards the gauge references at the validation sites, which 

is evidenced from the scatterplots in terms of red dots in Figure 4b. These improvements prove the significant superiority of 180 

the two-step blending method on reducing the systematic errors of the original multi-SPE and supplying higher daily 

precipitation in the warm season of 2014 over the NETP.   

 

The best-performed merging result is due to the ensemble contributions of the bias-corrected multi-SPE. The optimally relative 

weights are 0.019, 0.052, 0.289, and 0.640 with respect to PERCDR, 3B42V7, CMORPH and IMERG, respectively. It shows 185 
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that the bias-adjusted IMERG and PERCDR contributes the highest and lowest weights, respectively, in this blending process, 

and the contributions of the other SPE rank between IMERG and PERCDR accordingly. As the bias-adjusted IMERG shows 

the best performance among all the individuals, it proves that higher informative SPE shows more positive impact on the 

blended result under this two-step fusion approach. It is further concluded that this blending method has its ability to exert 

benefits from multi-SPE in terms of higher performance and mitigate poor impacts from the ones with lower quality. 190 

4.3 Model clarification with random verified sites 

Figure 5 shows the evaluation scores of RMSE, NMAE, and CC for the original multi-SPE and blended estimates at the 

validation sites with 10 random split of the gauge stations. For each test, 7 gauge sites are randomly selected from the 34 sites 

and used for model verification, and the remaining 27 gauge sites are used for model fitting.        

 195 

As for the blended result, it performs similar skill scores at the independent sites for the 10 random tests. It also shows better 

performance in terms of RMSE, NMAE and CC, which are 4.34~5.57 mm/h, 49.2~61.7%, and 0.49~0.67, respectively, 

compared to the raw multi-SPE at each random experiment. Statistically, the averaged values of RMSE, NMAE and CC for 

the blended data at the validation sites are 4.98 mm/h, 54.9% and 0.60, respectively, while the four SPE range from 6.21~7.72 

mm/d, 66.3~78.9%, and 0.38~0.57, respectively (Table 3). The averaged improvement ratios of RMSE for the blended data 200 

are 35.1%, 33.7%, 19.6% and 32.1% compared to PERCDR, 3B42V7, CMORPH and IMERG, respectively (Table 4). Similar 

performance is seen from the NMAE scores, where their mean improvement ratios are 29.8%, 30.1%, 17.0% and 21.3%, 

respectively for the four SPE. As seen in Figure 6, the blended result shows a significant improvement over the original multi-

SPE in the survey area, especially for PERCDR and 3B42V7. It is concluded that the biases of multi-SPE could be significantly 

reduced as the impacts of bias functions are well considered in the proposed two-step blending algorithm. 205 

4.4 Model application in spatial domain 

It is important to explore the Bayesian ensembles at any unknown sites in the study domain. Therefore, the two-step blending 

approach is applied on the four spatially distributed SPE (i.e., PERCDR, 3B42V7, CMORPH, IMERG) from Figures 7a to 7d 

to obtain blended estimates of daily mean precipitation in the warm season of 2014 for the whole study domain (not only at 

the gauge stations). Spatial maps of the merging predictions and the associated predictive uncertainties including SD, 5% and 210 

95% quantiles are shown along with the gauge observations (Figure 8). 

 

All of the multi-SPE have the ability in capturing the spatial patterns of daily mean precipitation during the warm season, but 

might fail in the representation of precipitation amounts in the NETP (Figure 7), likely because of the satellite retrieval biases 

in complex terrain and limited ground validation network. The spatial patterns of blended multi-SPE are shown in Figure 8a, 215 

which has a similar spatial pattern with a higher precipitation amounts in the southwest compared with the individual SPE. 

Based on the proposed blending approach, the fusion estimate performs a higher adjustment compared to the original SPE. It 
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is expected to show a better performance in terms of magnitude and distribution in the study area. Moreover, the predictive 

uncertainties are displayed from Figures 8b to 8d so as to illustrate the blending variance. In total, this study confirms the 

priority of exploring daily precipitation in spatial at higher accuracy and quantifying the associated uncertainty in the study 220 

domain. 

4.5 Model performance on a heavy rainfall case 

Accurate precipitation on extreme weather is very important for flood hazard mitigation. Here, we investigate the utility of this 

two-step blending approach on a heavy rainfall event of Sep 22, 2014 in the NETP (Figure 9a). The relative weights of 

PERCDR, 3B42V7, CMORPH, and IMERG for the blended data are 0.464, 0.123, 0.112 and 0.301, respectively, during this 225 

particular heavy rainfall event (Figure 9b). 

 

Table 4 reports the evaluation statistics reflecting the blended model performance on this heavy rainfall case, where the RMSE, 

NMAE and CC indices of the individual SPE range from 6.28~10.48 mm/d, 40.6~59.5%, and 0.69~0.82, respectively. Overall, 

compared to the individuals the merged product has lower RMSE and NMAE and higher CC values, which are 4.13 mm/d, 230 

27.4%, and 0.85, respectively. In other words, the RMSE and NMAE indices of the blended result decrease by 34.2~60.6% 

and 32.5~53.9%, respectively, while the CC index correspondingly increases by 3.4~23.9% on this heavy rainfall case 

compared to the individuals. The two-step blending approach has a great influence on the performance of SPE in terms of 

rainfall extremes in the warm season of the NETP.  

 235 

The blended model performance is further explored at three gauge sites (i.e., IDs 56171, 56152, 56182) with the top three 

rainfall records in terms of daily rainfall amounts on Sep 22, 2014 (Figure 9a). Figure 10 shows the Probabilistic Density 

Function (PDF) curves of blended samples of the above three sites during this event. It aims to demonstrate the blended 

performance on quantifying the predictive uncertainty on rainfall extremes in the survey region. At ID 56171, the estimated 

rainfall derived from PERCDR, 3B42V7, CMORPH and IMERG are 19.8 mm, 35.3 mm, 26 mm, and 40.2 mm, respectively. 240 

3B42V7 and IMERG shows an overestimation, while PERCDR and CMORPH underperform the daily rainfall at the 

corresponding pixel (Figure 10a). Based on the two-step blending methods, the median and SD values of the merging estimates 

are 24.1 mm/d, and 4.4 mm/d, respectively. At IDs 56152 and 56182, the median/SD values of blended multi-SPE are 24.3/5.0 

mm/d and 21.9/4.5 mm/d, respectively. As learned from Figures 10b and 10c, the medians of the blended result at IDs 56152 

and 56182 are very close to gauge observations in terms of 24.6 mm, and 23.1 mm, respectively. It shows that this two-step 245 

fusion algorithm provides a posterior inference and quantifies its predictive uncertainties on the heavy rainfall events. It is 

confirmed that the proposed two-step blending method is able to improve the daily precipitation amounts even during rainfall 

extremes in the NETP. 
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5 Discussions 

This study proposes a flexible two-step blending algorithm for merging multi-satellite and rain gauge precipitation data at 250 

daily scale, aiming to provide a more accurate precipitation datasets in regions with complex terrain. In spite of superior 

performance of the merging results, some issues still need to clarify: 

 

Because of limited knowledge on the influences of complex terrain and local climate on the rainfall patterns in the study area, 

the elevation feature is merely considered in the first stage. It is noted that deep convective systems occurring near mountainous 255 

have an effect on the precipitation cloud (Houze, 2012), which should be considered in future to resolve the impact of 

orography on the adjustment of individual SPE. In addition, as calculating the blended result in any new sites, the model 

parameters derived from the training sites are assumed to be applicable in the domain. Since the domain of this study is not 

very large and we have a relatively dense rain gauge network, the current assumption seems to be acceptable according to the 

performance of the blended data. However, it is noted that, if extended to the TP or the global scale, the extension of model 260 

parameters should be carefully considered. For instance, there are few gauges installed in the western and central TP (Ma et 

al., 2015), it might be a potential risk to directly apply this fusion algorithm for these regions.  

 

The goal of this study is not to model rainfall process in a target domain, but to propose an idea to extract valuable information 

from available multi-satellite sources and provide more reliable precipitation in high-cold regions with complex topography. 265 

Considering its spatiotemporal differences and the existence of many zero-value records, rainfall is extremely difficult to 

observe and predict (Yong et al., 2015; Bartsotas et al., 2018). With regard to the probability of rainfall occurrence, a zero-

inflated model, which is coherent with the empirical distribution of rainfall data, is expected to further improve the two-step 

fusion algorithm. In addition, hourly or even instantaneous precipitation intensity is extremely vital for flood prediction, which 

should be considered when extending this framework.    270 

6 Summary and prospects 

This study proposes a two-step blending algorithm for multi-SPE data fusion. A preliminary experiment is conducted over the 

NETP using four mainstream SPE to demonstrate the performance of this fusion approach, including PERCDR, 3B42V7, 

CMORPH, and IMERG. Primary conclusions are summarized below: 

 275 

(1) This blending algorithm is designed with high flexibility, which is capable of involving a group of multi-SPE that may 

follow different probabilistic distributions conditional on ground references. In addition, it provides a convenient way to 

compare the merging performance and further quantify the associated fusion uncertainties.  
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(2) The case studies show that the merged precipitation has higher skill scores compared with the individual SPE at the 280 

independent validation sites. The 10 random verification tests further confirms the superiority of the proposed two-step 

blending algorithm. The performance of this fusion algorithm is further demonstrated for the heavy rainfall event.  

 

(3) The experiment proves that this algorithm can allocate the contribution of individual SPE on the blended prediction because 

it is capable of ingesting useful information from uneven individuals and alleviating potential negative impacts from the poorly 285 

performing members.   

 

Overall, this work provides an opportunity for blending multi-SPE products. It is expected to promote the development of 

higher quality precipitation product in the remotely high-cold regions with widely available satellite precipitation retrievals. 

The exploration of model reliability of this two-step blending algorithm at larger scale (e.g., the TP) and higher temporal 290 

resolution (e.g., hourly) should be pursued in a future study. 

Data availability 

The gauge data are from China Meteorological Data Service Center (http://data.cma.cn). The PERCDR data are obtained from 

http://www.ncei.noaa.gov/data/precipitation-persiann/; the 3B42V7 data are obtained from https://pmm.nasa.gov/data-

access/downloads/trmm; the CMORPH data are obtained from ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0; the 295 

IMERG data are obtained from https://pmm.nasa.gov/data-access/downloads/gpm.  

Author contributions 

YM, XS and YH conceive the idea; XS, YH and YZ provide the project and financial supports. YM conduce the detailed 

analysis; HC, XS and YZ give comments on the analysis; all the authors contribute to the writing and revisions. 

Competing interests 300 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This study is supported by the National Key Research and Development Program of China (No. 2017YFA0603101), Strategic 

Priority Research Program (A) of CAS (No. XDA2006020102), and the National Natural Science Foundation of China (No. 

91437214). We also thank Dr. Ning Ma from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for the 305 

great comments and suggestions.  

https://doi.org/10.5194/hess-2020-43
Preprint. Discussion started: 17 February 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

References 

Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat O. P.: 

PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate 

Studies, Bull. Amer. Meteor. Soc., 96, 69-83, 2015. 310 

Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., 

Giraldo-Osorio, J. D., and Thinh, N. X.: RF-MEP: A novel Random Forest method for merging gridded precipitation 

products and ground-based measurements, Remote Sens. Environ., 239, 111606, 2020. 

Bartsotas, N. S., Anagnostou, E. N., Nikolopoulos, E. I., and Kallos, G.: Investigating satellite precipitation uncertainty over 

complex terrain, J. Geophys. Res.-Atmos., 123, 5346-5369, 2018. 315 

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. J., Martens, B., and de Roo A.: MSWEP: 3-

hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. 

Sci., 21, 589-615, 2017. 

Chen, H., Cifelli, R., Chandrasekar, V., and Ma, Y.: A flexible Bayesian approach to bias correction of radar-derived 

precipitation estimates over complex terrain: model design and initial verification, J. Hydrometeorol., 20, 2367-2382, 2019. 320 

Cuo, L., Zhang, Y., Gao, Y., Hao, Z., and Cairang L.: The impacts of climate change and land cover/use transition on the 

hydrology in the upper Yellow River Basin, China, J. Hydro., 502, 37-52, 2013. 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin D. B.: Bayesian Data Analysis-Third Edition, 

CPC Press. 2013. 

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, 325 

T.: The Global Precipitation Measurement Mission, Bull. Amer. Meteor. Soc., 95, 701-722, 2014. 

Houze., R. A.: Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001, 2012. 

Huffman, G., Adler, R., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J. E., McNab, A., Rudolf, B., and 

Schneider, U.: The global precipitation climatology project (GPCP) combined precipitation dataset, Bull. Amer. Meteor. 

Soc., 78, 5-20, 1997. 330 

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker E. F.: 

The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates 

at fine scales, J. Hydrometeorol., 8, 38-55, 2007. 

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, 

P.: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm 335 

Theoretical Basis Document (ATBD) Version 5.2, NASA/GSFC, Greenbelt, MD, USA, 2018. 

Joyce, R. J., Janowiak, J. E., Arkin, P. A. and Xie, P.: CMORPH: A method that produces global precipitation estimates 

from passive microwave and infrared data at high spatial and temporal resolution, J. Hydrometeorol., 5, 487-503, 2004. 

Krajewski, W. F.: Cokriging radar-rainfall and rain gage data, J. Geophys. Res., 92, 9571-9580, 1987. 

https://doi.org/10.5194/hess-2020-43
Preprint. Discussion started: 17 February 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

Li, H., Hong, Y., Xie, P., Gao, J., Niu, Z., Kirstetter, P. E., and Yong, B.: Variational merged of hourly gauge-satellite 340 

precipitation in China: preliminary results, J. Geophys. Res.-Atmos, 120, 9897-9915, 2015. 

Ma, Y., Zhang, Y., Yang, D., and Farhan S. B.: Precipitation bias variability versus various gauges under different climatic 

conditions over the Third Pole Environment (TPE) region, Int. J. Climatol., 35, 1201-1211, 2015. 

Ma, Y., Tang, G., Long, D., Yong, B., Zhong, L., Wan, W., and Hong, Y.: Similarity and error intercomparison of the GPM 

and its predecessor-TRMM Multi-satellite Precipitation Analysis using the best available hourly gauge network over the 345 

Tibetan Plateau, Remote Sensing, 8, 569, 2016. 

Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z., and Liu, R.: Performance of optimally 

merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau, 

J. Geophys. Res.-Atmos., 123, 814–834, 2018. 

Ma, Y., M. Lu, C. Bracken, and H. Chen,: Spatially coherent clusters of summer precipitation extremes in the Tibetan 350 

Plateau: Where is the moisture from? Atmos. Res., 237, 104841, 2020. 

Prat, O. P., and Nelson, B. R.: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain 

gauge data sets at daily to annual scales (2002–2012), Hydrol. Earth Syst. Sci., 19, 2037-2056, 2015. 

Renard, B.: A Bayesian hierarchical approach to regional frequency analysis, Water Resour. Res., 47, W11513, 2011. 

Sanso, B., and Guenni, L.: Venezuelan rainfall data analysed by using a Bayesian space time model, J. R. Stat. Soc. C.-355 

Appl., 48, 345-362, 1999. 

Shen, Y., and Xiong, A.: Validation and comparison of a new gauge-based precipitation analysis over mainland China, Int. J. 

Climatol., 36, 252-265,2016. 

Tang, Y., Yang, X., Zhang, W., and Zhang, G.: Radar and Rain Gauge Merging-Based Precipitation Estimation via 

Geographical-Temporal Attention Continuous Conditional Random Field, IEEE Trans Geosci Remote Sens, 56, 1-14, 2018. 360 

Tian, Y., Huffman, G. J., Adler, R. F., Tang, L., Sapiano, M., Maggioni, V., and Wu, H.: Modeling errors in daily 

precipitation measurements: additive or multiplicative, Geophy. Res. Lett., 40, 2060-2065, 2013. 

Verdin, A., Rajagopalan, B., Kleiber, W., and Funk, C.: A Bayesian kriging approach for blending satellite and ground 

precipitation observations, Water Resour. Res., 51, 908-921, 2015. 

Xie, P., and Arkin, P.: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and 365 

numerical model outputs, Bull. Amer. Meteor. Soc., 78, 2539-2558, 1997. 

Xie, P., Xiong, A.-Y.: A conceptual model for constructing high-resolution gaugesatellite merged precipitation analyses, J. 

Geophys. Res.-Atmos. 116, D21106, 2011. 

Yang, Z., Hsu, K., Sorooshian, S., Xu, X., Braithwaite, D., Zhang, Y., and Verbist, K.M.J.: Merging high-resolution 

satellite-based precipitation fields and point-scale rain gauge measurements - a case study in Chile, J. Geophys. Res.-Atmos., 370 

122, 5267–5284, 2017. 

https://doi.org/10.5194/hess-2020-43
Preprint. Discussion started: 17 February 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

Yong, B., Liu, D., Gourley, J. J., Tian, Y., Huffman, G. J., Ren, L., and Hong, Y.: Global View Of Real-Time Trmm 

Multisatellite Precipitation Analysis: Implications For Its Successor Global Precipitation Measurement Mission, Bull. Amer. 

Meteor. Soc., 96, 283-296, 2015. 

Figure and Table Captions 375 

Table 1: Basic information of multi-SPE used in this study. 

Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of the original, bias-adjusted, and 

blended multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at the validated sites of NETP in the warm season of 

2014. 

Table 3: Summary of the mean values of statistics including RMSE, NMAE and CC in terms of the original and blended 380 

multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at 10 random verified tests in the warm season of 2014 over 

the NETP. 

Table 4: Summary of the mean improvement ratios of statistics including RMSE, NMAE and CC in terms of the blended 

multi-SPE as compared to the original PERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests in the warm 

season of 2014 over the NETP. 385 

Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of the original and blended multi-SPE 

(i.e., PERCDR, 3B42V7, CMORPH, and IMERG) during a heavy rainfall event over the NETP on Sep 22, 2014. 

Figure 1: Overview of the topography and gauge observation network used in the study, where 27 gauges (black dots) are 

used for training and 7 (red dots) are used for independent verification. 

Figure 2: The diagram of the proposed two-step blending algorithm. 390 

Figure 3: Intercomparisons of statistical error indices for the original, bias-adjusted, and blended multi-SPE at the validated 

sites during the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 
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and IMERG) in the stage 2 process; (b) intercomparison of the original and blended multi-SPE at the validated sites during 

the warm season of 2014. 395 
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Figure 8: Spatial patterns of the blended multi-SPE in terms of (a) median, (b) standard deviation, (c) 5% and (d) 95% 

quantiles for daily mean precipitation during the warm season of 2014. 

Figure 9: (a) Spatial pattern of gauge measurements during a heavy rainfall case on Sep 22, 2014 over the NETP, where the 405 

site IDs 56171, 56152 and 56182 report the top three daily rainfall amounts of 30.4 mm, 24.6 mm and 23.1 mm, 

respectively; (b) the corresponding Box-Whisker plots of relative weights of the bias-adjusted multi-SPE (i.e., PERCDR, 

3B42V7, CMORPH and IMERG) in the stage 2 process. 

Figure 10: The PDF curves of blended samples and the corresponding median value at three gauge sites during a heavy 

rainfall case on Sep 22, 2014: (a) ID 56171, (b) ID 56152, and (c) ID 56182. The individual SPE including PERCDR, 410 

3B42V7, CMORPH, and IMERG as well as gauge based measurement at each pixel are also indicated in the figure. 
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Table 1: Basic information of multi-SPE used in this study. 

 415 

 

  

Short name Full name 

and details 

Temporal 

resolution 

Spatial  

resolution 

Input data Retrieval 

algorithm 

References 

 

PERCDR Precipitation 

Estimation from 

Remotely Sensed 

Information using 

Artificial Neural 

Networks 

(PERSIANN) 

Climate Data 

Record (CDR) 

 

Daily 0.25° 

 

 

 

 

2014.5-

2014.9 

 

 

 

 

Adaptive artificial 

neural network 

 

 

 

Ashouri et al., 

2015 

 

 

 

 

3B42V7 TRMM Multi-

satellite 

Precipitation 

Analysis (TMPA) 

3B42 Version 7 

3 hourly 0.25° 

 

 

 

2014.5-

2014.9 

 

 

GPCC monthly 

gauge observation 

to correct this bias 

of 3B42RT 

 

Huffman et al., 

2007 

 

CMORPH Climate Prediction 

Center (CPC) 

MORPHing 

technique for bias-

corrected product 

 

3 hourly 0.25° 

 

2014.5-

2014.9 

 

Morphing 

technique 

 

 

Joyce et al., 

2004 

 

 

IMERG Integrated Multi-

satellitE Retrievals 

for the Global 

Precipitation 

Measurement 

(GPM) mission 

0.5 hourly 0.10° 2014.5-

2014.9 

2014 version of 

the Goddard 

profiling 

algorithm 

(GPROF2014) 

Huffman et al., 

2018 
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Table 2: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of the original, bias-adjusted, and 

blended multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at the validated sites of NETP in the warm season of 

2014.  420 

SPE Type RMSE (mm/d) NMAE (%) CC 

PERCDR 
Original 7.36 74.6 0.42 

Adjusted 5.02 58.7 0.42 

3B42V7 
Original 8.07 83.5 0.40 

Adjusted 5.06 57.5 0.41 

CMORPH 
Original 6.59 67.5 0.49 

Adjusted 4.81 54.6 0.50 

IMERG 
Original 7.18 63.2 0.57 

Adjusted 4.56 50.9 0.57 

Blended multi-SPE 4.34 49.2 0.61 
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Table 3: Summary of the mean values of statistics including RMSE, NMAE and CC in terms of the original and blended 

multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) at 10 random verified tests in the warm season of 2014 over the 

NETP. 425 

 RMSE (mm/d) NMAE (%) CC 

PERCDR 7.72 78.5 0.38 

3B42V7 7.57 78.9 0.43 

CMORPH 6.21 66.3 0.51 

IMERG 7.37 70.0 0.57 

Blended 4.98 54.9 0.60 
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Table 4: Summary of the mean improvement ratios of statistics including RMSE, NMAE and CC in terms of the blended 

multi-SPE as compared to the original PERCDR, 3B42V7, CMORPH, and IMERG at 10 random verified tests in the warm 

season of 2014 over the NETP. 430 

 Index PERCDR 3B42V7 CMORPH IMERG 

Improvement 

Ratio (%) 

RMSE 35.1 33.7 19.6 32.1 

NMAE 29.8 30.1 17.0 21.3 

CC 61.3 38.2 17.5 4.3 
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Table 5: Summary of statistical error indices (i.e., RMSE, NMAE, and CC) in terms of the original and blended multi-SPE 

(i.e., PERCDR, 3B42V7, CMORPH, and IMERG) during a heavy rainfall event over the NETP on Sep 22, 2014. 

Multi-SPE RMSE (mm/d) NMAE (%) CC 

PERCDR 6.28 40.6 0.82 

3B42V7 10.12 59.5 0.69 

CMORPH 6.80 45.6 0.73 

IMERG 10.48 53.3 0.81 

Blended 4.13 27.4 0.85 

 435 

  

https://doi.org/10.5194/hess-2020-43
Preprint. Discussion started: 17 February 2020
c© Author(s) 2020. CC BY 4.0 License.



20 

 

 

Figure 1: Overview of the topography and gauge observation network used in the study, where 27 gauges (black dots) are 

used for training and 7 (red dots) are used for independent verification. 

  440 
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Figure 2: The diagram of the proposed two-step SPE blending algorithm. 
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Figure 3: Intercomparison of statistical error indices for the original, bias-adjusted, and blended multi-SPE at the validated 445 

sites during the warm season of 2014: (a) RMSE, (b) NMAE, and (c) CC. 
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Figure 4: (a) The Box-Whisker plots of relative weights of the bias-adjusted multi-SPE (i.e., PERCDR, 3B42V7, CMORPH 

and IMERG) in the stage 2 process; (b) intercomparison of the original and blended multi-SPE at the validated sites during the 450 

warm season of 2014. 
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Figure 5: Statistical error indices of the original and blended multi-SPE (i.e., PERCDR, 3B42V7, CMORPH, and IMERG) 

for 10 random tests during the warm season of 2014: (a) RMSE, (b) NMAE and (c) CC. 455 
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Figure 6: The Box-Whisker plots of improvement ratios of statistics for the blended multi-SPE compared to the original 

PERCDR, 3B42V7, CMORPH, and IMERG for 10 random tests during the warm season of 2014: (a) RMSE, (b) NMAE and 

(c) CC. 460 
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Figure 7: Spatial patterns of the daily mean precipitation derived from the original multi-SPE during the warm season of 2014: 

(a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG. 
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Figure 8: Spatial patterns of the blended multi-SPE in terms of (a) median, (b) standard deviation, (c) 5% and (d) 95% quantiles 

for daily mean precipitation during the warm season of 2014. 
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 470 

Figure 9: (a) Spatial pattern of gauge measurements during a heavy rainfall case on Sep 22, 2014 over the NETP, where the 

site IDs 56171, 56152 and 56182 report the top three daily rainfall amounts of 30.4 mm, 24.6 mm and 23.1 mm, respectively; 

(b) the corresponding Box-Whisker plots of relative weights of the bias-adjusted multi-SPE (i.e., PERCDR, 3B42V7, 

CMORPH and IMERG) in the stage 2 process. 
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Figure 10: The PDF curves of blended samples and the corresponding median value at three gauge sites during a heavy rainfall 

case on Sep 22, 2014: (a) ID 56171, (b) ID 56152, and (c) ID 56182. The individual SPE including PERCDR, 3B42V7, 

CMORPH, and IMERG as well as gauge based measurement at each pixel are also indicated in the figure. 
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